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Internal Alfvkn-gravity waves of small amplitude propagating in a Boussinesq, 
inviscid, adiabatic, finitely conducting fluid in the presence of a uniform trans- 
verse magnetic field in which the mean horizontal velocity U ( z )  depends on 
height z only are considered. We find that the governing wave equationis singular 
only at  the Doppler-shifted frequency Qd = 0 and not a t  the magnetic singu- 
larities Qd = QA, where Q, is the Alfvh frequency. Hence the effect of ohmic 
dissipation is to prevent the resulting wave equation from having magnetic 
singularities. Asymptotic solutions of the wave equation, which is a fourth-order 
differential equation, are obtained. They show the presence of the magnetic 
Stokes points Qd = f f i A .  The interpretation of upward and downward propaga- 
tion of waves is also discussed. 

To study the combined effect of electrical conductivity and the magnetic field 
on waves a t  the critical level, we have used the group-velocity approach and 
found that the waves are transmitted across the magnetic Stokes points but are 
completely absorbed a t  the hydrodynamic critical level !& = 0. The general 
expression for the momentum flux is mathematically complicated but will be 
simplified under the assumption 

where h is the perturbation magnetic field. In  this approximation we find that 
the momentum flux is not conserved and the waves are completely absorbed a t  

The general theory is applied to a particular problem of flow over a sinusoidal 
corrugation and asymptotic solutions are obtained by applying the Laplace 
transformation and using the method of steepest descent. 

Qa = 0. 

1. Introduction 
Much attention has been given in recent years to the detection and measure- 

ment of irregular motions in the D, E and lower P regions of the atmosphere and 
to the occurrence of irregular density distributions at the same heights. Many of 
these irregularities may have their origin in disturbances in the atmosphere, 
namely, in propagating atmospheric waves controlled by gravitational, com- 
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pressive and Lorentz forces. The physical basis for such types of waves in the 
ionosphere has been presented by Lighthill (1960). Thus, internal wave pheno- 
mena in stratified or non-stratified flow with or without rotation in various situa- 
tions have received considerable attention from a number of authors (see 
Bretherton 1966; Booker & Bretherton 1967). The governing mechanism of such 
waves in fluids is often attributed to the density stratification, rotation, tempera- 
ture distribution, etc., and is of great practical importance in oceanography and 
meteorology (see Hines 1963). 

The problem of the hydrodynamic stability of stratified shear flows, neglecting 
viscosity, although having antecedents in the work of Kelvin and Rayleigh, dates 
from G. I. Taylor’s Adam’s prize essay of 1915, which was published concurrently 
with a closely related investigation by Goldstein (1931). These two papers, 
dealing primarily with specific flow configurations, were followed closely by 
Synge’s (1933) study of the general boundary-value problem and derived the 
equation for a small disturbance in the form (see Booker & Bretherton 1967) 
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k2 w=o, u“ 1 W”+ ((q-Cc- 
N2 

where N is the Brunt-VaisBa frequency, U is the basic velocity and depends only 
on the vertical co-ordinate x ,  w is the vertical component of velocity, which is 
normal to the undisturbed flow, primes denote differentiation with respect to z, 
c = w / k  is the wave velocity, w is the oscillation frequency and k is the wave- 
number. The stability of the flow on the basis of ( 1.1) was also discussed by Miles 
(1 96 1) and Howard ( 196 1) and they have shown that if U I’ + 0 a sufficient condi- 
tion for stability is that the Richardson number JH be greater than one-quarter. 
Equation (1.1) has a singularity whenever U - c = 0 and this singularity is worse 
than that in the absence of gravity. The physical significance of ( I .  1) a t  the 
singular point where the velocity component of the small disturbance parallel to 
the undisturbed flow becomes infinite has been discussed by Booker & Bretherton 
(1967). However, in any real fluid, in the absence of gravity, viscosity will inter- 
vene to prevent the velocity component becoming infinite a t  the singular plane. 
Hence, it is necessary to invoke viscosity in order to get a physically meaningful 
small disturbance equation. Although this equation is not singular a t  U - G = 0 
this point still has some significance in connexion with the asymptotic solutions 
because it is a Stokes point for such solutions. Koppel(l964) has shown that, in 
the case of density stratification which is mainly due to a temperature gradient 
with a non-zero thermal conductivity in the presence of gravity, it is necessary to 
include not only viscosity but also heat conductivity to prevent the resulting 
differential equation from having a singularity, and he gives an analytical 
asymptotic solution to the resulting sixth-order differential equation. The same 
problem has also been investigated numerically by Hazel (1967), who has shown 
that two of his solutions tend to the inviscid solutions asymptotically well away 
from the critical levels, but the other four viscous solutions are not negligible 
near this level. Hazel’s (1967) analysis predicts a phase change in the disturbance 
across the layer as well as an attenuation if JH > t. The effect of viscosity on 
gravity waves is also discussed by Yanowitch (1967) with reference to the 
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atmosphere. He has found that there is a region in which the solution behaves 
like certain solutions of the inviscid problem. Yanowitch (1967) also predicts that 
the viscosity, in addition to damping the motion, causes reflexion of waves. All the 
above analyses pertain to the linear theory. However, recently Kelly & Maslowe 
(1970) have made a nonlinear critical-layer analysis. They have shown that, in 
contrast to the linear viscous analysis, no phase change occurs across the critical 
layer. 

The importance of AlfvBn waves in the upper atmosphere, particularly in the 
ionosphere, has been discussed by Lighthill (1960), who has given the physical 
significance of such waves. Recently, Rudraiah & Venkatachalappa (19723, c, 
hereafter called RV b,  c)  have discussed AlfvBn-gravity waves in a non-dissipative 
stratified shear flow and obtained the following differential equation for a small 
disturbance : 

where Qa = kU - w is the Doppler-shifted frequency, QA = k A  is the AlfvBn 
frequency and A is the AlfvBn velocity. Equation (1 2) is singular at  Qa = 0, & QA.  

That is, there are two magnetic singularities in addition to one hydrodynamic 
singularity. The corresponding problem in the presence of uniform rotation has 
also been discussed by Rudraiah & Venkatachalappa (1972 a, hereafter RVa), 
who have shown that the corresponding wave equation is singular at 

Q2,= 0,  kQk(f i2+Q%)' ,  

where Q is the Coriolis frequency. These singularities imply that the horizontal 
velocity and magnetic field components of the small disturbance become infinit,e 
at  the singular planes. In  any real fluid the effects of viscous, thermal and ohmic 
dissipation may intervene to prevent this from happening. Thus it is interesting 
to see whether the presence of ohmic dissipation will remove the magnetic singu- 
larities of (1.2) or not and hence to get physically meaningful solutions for the 
horizontal velocity and the magnetic field components. The stability of this 
system is investigated by Rudraiah (1964). 

Therefore, the aim of the present paper is to study the propagation of internal 
AlfvBn-gravity waves in an inviscid stratified shear flow of a finitely conducting 
fluid in the absence of thermal diffusion but in the presence of a uniform magnetic 
field. The purpose of this study is to demonstrate that the singularity Qa = 0 is 
purely due to the neglect of the effects of viscous and thermal diffusion and that 
the magnetic viscosity (i.e. ohmic dissipation) plays no part near the hydro- 
dynamic critical layer. It is found that the governing wave equation is of order 
four and is not singular a t  the magnetic critical layers, but is singular a t  the 
hydrodynamic critical layer for neutrally stable disturbances. Thus the magnetic 
singularities of (1.2) are due to the neglect of ohmic dissipation. Solutions of the 
wave equation are obtained near the hydrodynamic critical layer. Two solutions 
are the same as the inviscid hydrodynamic solutions obtained by Booker & 
Bretherton (1967). Of the other two solutions, one tends to zero and the other 
behaves logarithmically a t  this level. From the hydrodynamic solutions we find 
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that the wave amplitude is attenuated by a factor exp (-pan), where 
po = (JH - $): > 0 and JH is the hydrodynamic Richardson number. In  other 
words, the behaviour of waves near Qd = 0 is independent of the electrical con- 
ductivity and magnetic field. Away from the critical level there exist waves 
which are similar to the waves in a perfectly conducting fluid discussed in RV c. 
Both near and away from the critical level there are two waves similar to those 
in a perfectly conducting fluid. Also, there exist two other waves which cannot 
be neglected near the level Qd = QA but tend to zero as z becomes large. 

In  the present paper we also discuss the effect of electrical conductivity on the 
mechanism of absorption, reflexion and transmission of waves. This is done by 
examining the motion of the wave packets near the criticallevels. It is shown that 
as a wave propagates vertically through the hydrodynamic critical level it is 
strongly attenuated. 

However, the energy flux near this critical level becomes infinite. This infinite 
energy may be due to the neglect of viscosity and heat conduction and could be 
removed by including these dissipative effects. Work is in progress to include 
these dissipative effects. 

The solution of the wave equation near the magnetic critical layers is obtained 
following the analysis of Koppel (1964). It becomes difficult to find, in general, 
an expression for the total Reynolds stress or the momentum flux. However, we 
note that it is possible to express the Reynolds stress in terms of w, the vertical 
perturbation velocity, if the perturbation magnetic field varies much less in the 
vertical direction than in the two horizontal directions. This implies that 

a2h a2h a2h -<-+- 

where h is the perturbation magnetic field. In  this approximation we also find, 
from the group-velocity approach, that the waves are absorbed a t  the hydro- 
dynamic critical level. The total momentum flux is not conserved in contrast to  
the perfectly conducting fluid discussed in RV c. The non-conservation of 
momentum flux is due to the dissipative effect of magnetic viscosity (see 
Chandrasekhar 1961, § 39; Hughes & Young 1966, 3 13). 

Finally, we consider formally a specific example, the time development of a 
stationary train of waves above a corrugation in the lower boundary which is 
introduced suddenly a t  time t = 0. The flow field for this problem a long time 
later is also discussed. 

The results of the present problem are of geophysical and astrophysical 
interest. One geophysical application is concerned with the propagation of 
internal AlfvBn-gravity waves from the troposphere to the ionosphere. The 
results of the present paper are obtained on the assumption that the electrical 
conductivity is homogeneous and isotropic, whereas the ionospheric conduc- 
tivity in general is not isotropic (Hines 1963). To apply the results of this paper 
to the geophysical problem we discuss the validity of the assumption of homo- 
geneity and isotropy. In  the ionosphere, in addition to viscous and heat dissipa- 
tion, there will be magnetic dissipation due to the magnetic diffusivity, and the 
magnetic energy dissipation per unit volume is given by J .  E', where J is the 

a22 ax2  a p  
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current density, E’ = E +  q x B, E is the electric field, q x B is the induced 
electric field, called the dynamo field, q is the velocity of conducting fiuid 
induced by the internal AlfvBn-gravity waves and B is the geomagnetic induc- 
tion. The current density has a component Jl = croE,, directed parallel to B, 
where cr,, is the longitudinal electrical conductivity and Ell is the component of E 
parallel to B. It also has a component JL = crlE, transverse to B in the direction 
of the transverse component of E‘, where crl is the Pedersen conductivity (see 
Hines 1963). We note that the current density will in addition have a Hall com- 
ponent transverse to both B and E’ but that component is relatively small in the 
ionosphere and in any event contributes nothing to J.E’.  Since the current 
density is nearly solenoidal, we have 

where L,, and L, are respectively the characteristic lengths of Jl along B and of JL 
across B, and from this it follows that 

IEIII % IElI ~ l L I l / ~ O L ~ .  

Jl,E,, M J,E2a,/ao) LVL2,. 

It follows in turn that 

Since crl is less than cro by four orders of magnitude or more, it follows that the 
energy dissipation derives primarily from the JL E l  contribution to J . E’ unless 
L, < L,,. In  our physical model E,  results almost entirely from the q x B contri- 
bution to it and so the energy dissipation rate per unit volume is given approxi- 
mately by alqtB2, where q1 is the component of q perpendicular to B. In  the 
present paper qL = U ,  which is in the x direction, and the magnetic induction B 
is in the y direction. Since the main contribution to the current density comes 
from q x B we can neglect the 4, component and consider only the J, ( = crl UB) 
component and assume that crl = cr is isotropic. In  this approximation the results 
of the present paper are applicable to the geophysical problem discussed above. 

2. Derivation of wave equation 
The physical model consists of an incompressible, inviscid, heterogeneous, 

finitely conducting fluid occupying the region 0x32 such that the axis Oz is 
vertical. Let the fluid have a mean density with vertical structure 

d(logPo)/dz = -8. (2.1) 

To derive the wave equation for the motion of a finitely conducting fluid in the 
presence of a transverse magnetic field with the above vertical density stratifica- 
tion the following assumptions are made. 

(a )  The motion is three-dimensional. The fluid is inviscid, finitely conducting 
and adiabatic. 

(b)  The Boussinesq approximation. 
( c )  The perturbation velocities (u, v, w )  from the basic U(x)  state in the 

x direction and the perturbation magnetic field (h,, h,, h,) from the basic uniform 
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applied magnetic field Ha in the y direction, which is transverse to the mean flow, 
are so small that 

We note that  the problem of the propagation of internal AlfvBn-gravity waves 
in a conducting fluid with an aligned magnetic field is similar to the case of a 
transverse magnetic field (i.e. in the y direction) except that Q A ,  which equals A1 
in the case of a transverse magnetic field, is replaced by Alc in the case of an 
aligned magnetic field, A being the Alfv6n velocity and k and 1 the wavenumbers 
in the x and y directions respectively. We further note that, as in the case of 
a perfectly conducting fluid (RVc), if the applied magnetic field H, is in the 
z direction the basic horizontal velocity U ( z )  has to be uniform to satisfy the 
magnetic induction equation. Since the aim of the present analysis is to consider 
shear flow (i.e. d Uldz + 0) we avoid an applied magnetic field in the z direction. 
Under these assumptions the linearized equations of motion are 

- P,D 0 PO(D3U) D ,  0 -ruHoD,. 0 0 

0 p l D  0 D,  0 0 -PROD, 0 

0 0 POD D3 9 0 0 -rUfioD, 
D,  D,  D3 0 0 0 0 0 

0 D 3 p 0  0 0 0 

0 -HOD, 0 0 0  0 D - v,V2 0 

0 0 0 0 0  D, D, D3 

-HOD, 0 0 0 0 D-v,Q2 0 -D,U 

0 0 -HOD, 0 0 0 0 D-v,V2 

where P is the total perturbation pressure, p is the perturbation density, g is the 
acceleration due to gravity, v, = l/pTo is the magnetic diffusivity, p is the 
magnetic permeability, yo is the electrical conductivity, 

and 

By eliminating u, v, P,  p, h,, h, and h, from ( 2 . 2 ) ,  we obtain a single wave 
equation 

a w  aw 

a23 axaz dz4 ax + v,-- (V2w) - A2- (V'W) + 2 ~ , -  - - v,,- - 
a w  a a 2  a3u a2w 

a22 ax ay2 
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- Bv, g ) 2 N 2 V C :  (g) = 0, (2.3) 

where A = Ho(,u/po)4 is the Alfvdn velocity and 

v; = a2/ax2 + a2/ay2. 

The hydromagnetic wave equation (2.3) for a finitely conducting fluid is of 
order eight, whereas the corresponding equation for a perfectly conducting 
fluid discussed in RV c is of order six, which is of importance in the determina- 
tion of critical levels (see 3 3 below). 

We can assume a sinusoidal wave of small amplitude of the form 

w(x, y, z ,  t )  = a(z) exp [i(Ex + Zy - w t ) ] ,  (2.4) 

where w is the wave frequency and E and 1 are the wavenumbers in the x and 
y directions respectively. Then 8 ( z )  satisfies the equation 

2 i ~ 2 ~ , a u a 3 u  ikVma4u 
w = 0,  (2.5) +------ 1 a: dz dz3 Q,j dz4 

where QA = Al. 
We note that this fourth-order wave equation (2.5) tends to a second-order 

wave equation ,which is similar to (1.2)) in the limit vm-+O. Another important 
feature is that in the case of a perfectly conducting fluid discussed in RVc the 
wave equation is singular at both the hydrodynamic critical layer Qd = 0 and 
the magnetic critical layers Qd = & QA, whereas in the case of a finitely con- 
ducting fluid discussed here the wave equation (2 .5 )  is singular only a t  i& = 0 
and not at  ad = & QA. The removal of the singularities can be attributed to 
the inclusion of higher order derivatives representing dissipative effects. There- 
fore the effect of the ohmic dissipation is to remove the magnetic singularities. 
The magnetic diffusivity does not play any part in removing the hydrodynamic 
singularity. This is analogous to the part played by viscosity in the case of 
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hydrodynamic flow discussed by Koppel (1964) and Hazel (1967). In that case 
Koppel(l964) has shown that to remove the hydrodynamic singularity in addi- 
tion to viscosity we should also consider the thermal diffusivity. The same situa- 
tion may also prevail even in the case of a stratified conducting fluid in the 
presence of gravity, i.e. inclusion of the thermal diffusivity and viscosity in 
addition to the magnetic viscosity may also remove the hydrodynamic singu- 
larity of (2.5). Work relating to this is in progress. 

3. Solution of wave equation 
The singularity of (2.5) a t  the critical level ad = 0 may evidently be regarded 

as a consequence of the loss of higher order derivatives owing to the neglect of 
viscous and thermal dissipative effects and can presumably be resolved by a 
boundary-layer-type analysis as discussed by Hazel (1967). This singularity, as 
Miles (1961) has pointed out in connexion with the critical level for internal 
gravity waves in a shear flow (see Acheson 1972), may also be regarded as a 
consequence of restricting our attention to a single sinusoidal component given 
by (2.4). Accordingly, by posing an initial-value problem and then determining 
its asymptotic solution as t - t co  (see RVc) we should be able to match the 
solutions on the two sides of the critical level even in the absence of viscous and 
thermal dissipation. It has, however, proved possible to resolve the singularity 
by simpler means following Booker & Bretherton (1967). The method involves 
allowing the phase velocity c to have a small imaginary part ci > 0 so that the 
amplitude of the wave at any station is slowly growing with time. By thus 
investigating the solution of ( 2 . 5 )  near z = zo (the level where Qd = 0 )  and then 
taking the limit ci --f 0 we obtain a matching condition connecting the solutions 
on the two sides of the critical level. The detailed matching process is omitted 
here for it is similar to that of RVc. Asymptotic solutions near the hydro- 
magnetic critical layers !& = ? OA are also obtained. The physical significance 
of these solutions will be explained in the next section. 

The solution of (2.5) near Qd = 0, obtained by the method of Frobenius, is ’ = A 1 $ l + B 1 $ 2 f C 1 @ 3 + D 1 $ 4 ,  (3.1) 

(3.2) 

where @, = (z-zo)t+ipo[l +a,(z-z,) + ...I, 
$kZ = (z-z,)+-il”o[l +b,(z-z,)+ ...I, 
$3 = ( X  - x , ) ~  [ 1 + c,( z - z0)  + . . .], 
$4 = (2 - 20) + ( z  - z,I2 [I i-d,(z -20) + ...I, 

a,, b,, c1 and d, are known constants such that 

is the hydrodynamic Richardson number. 
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and $2 are similar to inviscid hydrodynamic 
solutions given by Booker & Bretherton (1967).  Hence, the first solution repre- 
sents an upward-travelling wave and the second solution represents a down- 
ward-travelling wave. This situation was also observed by Hazel (1967)  in the 
discussion of hydrodynamic internal gravity waves in the presence of heat 
conduction and viscosity. He showed that two of his solutions away from the 
critical level are similar to those given by Booker & Bretherton (1967) near the 
critical level. We also note that the remaining two solutions $3 and +4 in (3.1) 
tend to zero as z+zo. 

We note that the solutions 

Now, if we fix the branch of ( z  - zo)$+fpo  by choosing 
( z -zo)$*ipo  = lz-z,liexp (+i,uolog~z-zo~) for z > zo, (3.3) 

(z-z,)**i~o = - i e x p ( ~ , n ) ~ z - z 0 ~ ~ e x p ( ~ i , u 0 1 o g ~ z - z 0 ~ )  for z < zo. (3.4) 

Thus the magnitude of the first two terms in (3.1) is not the same a t  a given 
distance above and below the critical layer Qd = 0 but differs by a factor of 
exp(-,uon). In  other words, they are attenuated on passage through the 
critical layer. The magnitude of the third term in (3.1) remains the same and 
hence is not attenuated on passage through the critical layer. Whereas the 
square of the fourth term in (3.1) differs by an amount 13:n2 and hence is 
attenuated there. 

The above solutions are correct near the hydrodynamic critical layer Qd = 0. 
In  the remaining part of this section we try to find, following Koppel (1964),  
the solution of (2.5) near the magnetic critical layers 0, = + a,. For this, the 
trial function 

with CL = (k2 + P)* is substituted into the differential equation. 

we get 

where a prime denotes the differentiation with respect to z .  If we suppose that 
Qd $: 0 and A ,  4 0 this becomes 

The solutions of this equation are 

it then follows that 

G(z) = A,@) exp “a/iv,)+Bo(~)l (3.5) 

Substituting (3.5) into (2.5) and equating to zero the terms of order a/iv, 

A,, Bh4 + a,( Qi - Q:) BA2A0 = 0, ( 3 4  

K Q , B ~ ~ + ( Q $ - Q ~ ) B ~ ~  = 0. 

BA2 = 0, Bh2 = - (Qi - Q%)/aLn,. 

Now equating to zero the terms of order (a/iv,)*, we obtain 

aQi(4.A; BA3+ 6A0Bb2B:) + Q,(Qj - Q;) ( 2 4  B; + AoBi) 
+ Zf&k(dU/dz) AoBA = 0. 

If B;2 = 0, this equation is identically satisfied. The case 

BA2 = - (Qi - Q % ) / c L L ~ ~  

leads to the following equation: 

2AA 5B: ZQ22,kdUldz 

A ,  
- = -- 

BA + Q,( Qi - Q:) * 



714 

Integrating this, we get 
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AOE Q$/(Q2, - Q5)t. 

Hence we obtain two solutions 

Since for two cases the equation determined by letting the terms of order 
(a/ivm)4 vanish is identically satisfied, we must go to terms O(1) in (2 .5 )  for 
these cases. When Bh2 = 0,  this gives 

(3.8) 

This is the same as the small disturbance equation obtained in RVc for a 
perfectly conducting inviscid fluid. In  other words, the magnetic viscosity has 
no effect near the critical level = 0 and away from Qd = QA and is pre- 
dominant only a t  Qd = QA.  The two solutions determined from (3.8) will be 
called and 9,. Therefore, the solutions of (3.8) near the critical level Qd = QA,  

following RVc, are 

$1 = l + c ~ ( z - z l ) +  ..., I 

where z1 is the position of the critical layer Qd = QA. From the solution 4, it 
follows that the amplitude of the wave a t  a given distance from = QA on 
either side is not the same and the square of the amplitude differs by a factor n2. 

Similar solutions can be obtained near the lower magnetic critical layer a t  
z2 corresponding to Qd = - QA.  We note that the asymptotic solutions (3.7) are 
singular a t  Qd = I QA,  even though the governing differential equation ( 2 . 5 )  
is not singular a t  such points. These points are called magnetic Stokes points. 
A good representation of the solutions near the Stokes points is lengthy and 
will be presented in a subsequent paper. 

The above solutions are correct in the case of shear flow. When the basic 
flow is uniform, however, the solution of (2.5) is 
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The branches for m, and m2 can be chosen by requiring that, if ci > 0,  
mli > 0 and mZi > 0, where ci, mli and mZi are the imaginary parts of c, m, and 
m2 respectively, c being the phase velocity. 

4. Energy flow and group velocity near the critical level 
In  this section we discuss the phenomenon of absorption of waves near the 

critical levels using the concepts of energy flow and group velocity. 

4.1. Energy $ow 
It is found that it is not possible to express the momentum flux in terms of 
and hence momentum transfer to the mean flow cannot be discussed analytic- 
ally, but can be determined using numerical analysis. I n  this section, however, 
instead of finding the momentum flux, we find the energy flow near the critical 
level Qd = 0. It is found that 

2ka2vmf12(3 +7- i Q 5 1 % d U ) ~ ]  
Q% Qd dz ' 

where P is the perturbation pressure. 
Using (3.2) we obtain the energy flow Pw, which for the first two solutions 

becomes infinite when Qd-+ 0, where the overbar represents the average over 
a horizontal wavelength. Thus when d U / d z  = constant, we have for the first 
solution of (3.2) 

For the second solution 

I n  these two cases Pw-t co as + zo. For the third solution of (3.2) 

which tends to zero as z+zn. Similarly, for the fourth solution P<+ 0 as z+zo. 
I n  the case of uniform basic flow Pw takes the form 
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where 8 is given by (3.10). We note, following the analysis of RVc, that % 
is positive for the first and third solutions of (3.10) and hence the wave energy is 
flowing upwards. I n  other words, they represent upward-propagating waves. 
Similarly, the second and fourth solutions represent downward-propagating 
waves. 

Further, we note that the magnetic diffusivity is not sufficient to remove the 
infinite energies, which could be removed by including viscosity and heat 
conduction. 

4.2.  Group velocity 

The full dispersion relation satisfied by an internal AlfvBn-gravity wave with 
horizontal wavenumbers k and I and vertical wavenumber m is 

- iQ25,(a2+m2) - Qi[v,(a2+ m2)2 + i k U f f ]  

+ iQ$[N2a2 + ikv, Uf‘(a2 + m2) + Q%(a2 + m2) + 2v,mkU” + ikv, U‘”] 

+ Q:[a2(a2+m2)v ,N2-  2v,Uf(k2U”+iU”rnk2) 

- v , k 2 U N 2 + i k Q ~ ( 2 i m U ’ +  U”)]  

-iQ2d[2iv,nk3Uf2Un + 2ivmkN2a2(U”+ 2imU’) + 2A2k212Uf2] 

- ~ v , ~ ~ c ~ ~ U ’ ~ N ~  = 0. ( 4 . 1 )  

In  a slowly varying medium (i.e. if U ( z )  and N do not vary very much over 
a wavelength), however, an internal Alfv6n-gravity wave satisfies the dispersion 
relation 

We note that this relation reduces to one obtained by RVc when v,+ 0, i.e. 
in the perfectly conducting case, and to one obtained by Booker & Bretherton 
(1967) when 1 + 0,  v,+ 0 and QA+ 0, i.e. in the hydrodynamic case. We obtain 
the same dispersion relation (4 .2 )  for the case of uniform basic flow with Qd 

constant. 
When Qd --f 0, we observe that m -+ co. Also when v,  =!= 0 and !Jd is real, m is 

complex. Equation ( 4 . 2 )  is precisely the frequency relation for plane internal 
gravity waves in uniformly stratified finitely conducting media. We note that, 
as in the hydrodynamic case (see Bretherton 1966), this comparison is only 
locally valid. 

From ( 4 . 2 )  we find that awlam tends to zero as Qd+O,  whereas it is finite a t  
Qd = QA. Hence, waves are completely absorbed at  the critical layer Qd = 0 
without being reflected or transmitted and they are transmitted through the 
magnetic critical levels Qd = QA.  Comparing these results with those for the 
perfectly conducting case discussed by RVc, where the waves are completely 
absorbed at  the magnetic critical levels, we find that the effect of magnetic 
diffusivity is to prevent the total absorption a t  the magnetic critical levels. 
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5. Approximation to the momentum flux 

approximation 
In this section we find an expression for the momentum flux using the 

(5.1) 
8% a2h a2h 
-+-%-- 
ax2 ay2 3 x 2 -  

This approximation can be justified physically using a result obtained by 
Acheson & Hide (1973). By considering a plane sinusoidal wave of the form 
exp [ i ( k z  + Zy + mx + wt)] the above approximation leads to the fact that 
m/(k2+Z2)6 < 1;  Acheson & Hide (1973) have shown that the ratio [m//(k2+Z2)6 
associated with a slow hydromagnetic wave in the process of being captured a t  
its critical level is small before effects due to ohmic dissipation become important. 
Hence the approximation (5.1) is valid in the case of slow hydromagnetic waves. 
Under this approximation, assuming sinusoidal variations of the form (2.4), the 
vertical disturbance velocity satisfies the equation 

where 0, = 0 is the regular singular point of this equation. The solution of this 
equation near Qa = 0 (i.e. z = xo)  is 

8 = A,@ - ~ , ) t + ~ f l o  (1 + all(x - x 0 )  + a12(x - zo)2 + . . .} 
+B,(z-x,)t-i~o(l + b l l ( Z - X o )  + b 1 2 ( Z - x O ) 2 +  ...}, (5.3) 

where with r = 4 + ipo, 4 - ipo, 

Solution (5.3) is similar to the hydrodynamic solution of Booker & Bretherton 
and the behaviour of the waves will be the same as that of the hydrodynamic 
waves near the critical level Qd = 0. In  other words, under the approximation 
(5.1) the magnetic field has no effect on the waves near Qd = 0. 

Further, the solution of (5.2) away from the critical level, when N 2  9 Q;, is 

8 = A4(z - Z ~ ) ; + ~ P ~ (  1 +u,,/(z - x 0 )  + CA,,/(Z - z0)2 + . . .} 
+ B * ( Z - Z o ) ~ - ~ p ~ , ( l  +bz1/(z-zo) + b 2 2 / ( Z - 2 0 ) 2 +  ...I, 

where p m  = (JH + JM - $)$. This solution is the same as the one obtained by RVc 
in a perfectly conducting fluid. Hence the magnetic viscosity has no effect near 
and away from the critical level. 

The total momentum flux is M + G ,  where 
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and an overbar denotes a time average. Expressing Jf + G in terms of w, when 
d U / d z  = constant, we get 

where h, = HoZw/(Q2,-iu,a2) and w* is the complex conjugate of w. By differ- 
entiating ( 5 . 5 )  with respect to x and using the wave equation (5.2) we find that 

d ( M + G ) / d z  + 0. ( 5 . 6 )  

That is, the total momentum flux or the total stress is not constant. Hence the 
total momentum flux is not conserved. This is due to the dissipative effect of 
magnetic viscosity. 

If U and N do not vary by very much over a wavelength, an internal gravity 
wave with horizontal wavenumbers k and 1 and vertical wavenumber m satisfies 
the dispersion relation 

When Q,+ 0, m+cc and the group velocity tends to zero, so that the waves are 
completely absorbed a t  Q, = 0. 

6. The time-dependent disturbance above a sinusoidal corrugation 
In  this section, we consider an initial-value problem to illustrate some of the 

results of the preceding sections. We consider a, constant shear flow with the 
uniform applied magnetic field in the horizontal, y direction (figure 1). We con- 
sider a physical situation where the induced current sets up a polarized electric 
field which in turn balances the original induced field. I n  other words, we are 
considering a physical model similar to the open-circuit situation. This is an 
idealized physical model where the Lorentz forces have a negligible effect on the 
primary flow and a significant effect only on the disturbed flow. We take N2 to 
be independent of z and the basic velocity U ( z )  in the x direction to be of the 
form (see figure 1 )  

U‘h in region 1, i.e. z > 2h, 

U’(z- h) in region 2 ,  i.e. 0 < x < 2h. 

The fluid is unbounded and there is only basic velocity U in the x direction, i.e. 

w = 0 everywhere for t < 0. (6.2) 

At time t = 0 a disturbance is introduced by imposing a sinusoidal velocity 
distribution on the lower boundary a t  z = 0, and subsequently maintaining it: 

w =  acoskx on z =  0 for t > 0, (6.3) 

w+O as z+co for t > 0. (6.4) 

where a is the amplitude of the variation. The upper boundary condition is 
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FIGURE 1. The basic state. ------, critical level; m, critical layers. 

A long time after the disturbance is introduced, it may be necessary to look a t  
very large values of z to find a disturbance which is small, but we assume that, 
a t  any given time t, this is always possible. The source of the disturbance, as in 
the case of hydrodynamic flow (Booker & Bretherton 1967), is thus a t  x = 0. 

The perturbation w(x, y, z,  t) satisfies the wave equation (2.3), which was 
obtained on the basis of a linearization valid only for small amplitudes a. For 
any given amplitude, however, it ultimately breaks down. Nevertheless, we 
investigate the solution up to the time that the theory becomes inconsistent, and 
may in principle justify this for any value of t  by taking a sufficiently small. With 
the broken-line profile of (6. I), where we have assumed that the effect of Lorentz 
forces on the primary flow is negligible, Us, is everywhere zero, except at the 
height x = 2h. At this level U, in the governing equation may be replaced by 
a delta function: 

u, = - U’6(z - 2h). (6.5) 

This is equivalent to matching the pressure and vertical velocity across the 
perturbed interface between the two separate fluids in regions I and 2. 

We now introduce the dimensionless variables 

} (6.6) 
6 = xfh, 4 = y /h ,  5 = (x-h)/h, T = U‘t, a, = kh, 

Po = Ih, y = c/U’h, S = A/U‘h, J = (N’2/U‘2)  (1 +&/CC;), 

where a. and Po are the dimensionless wavenumbers in the horizontal x and y 
directions respectively, y is the dimensionless phase velocity in the y direction, 
S is the Alfvth number and J is the modified Richardson number. Use of the 
sinusoidal variations in 5 and 7 and the Laplace transform in time yields a 
convenient solution of the wave equation (2.3). Let 
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For the convergence of this integral we assume that the relevant part of the 
complex plane corresponds to yi > 0. The Laplace transform of the governing 
equation assumes different forms in regions 1 and 2 .  In  region 1 ( 5  > 1) 

In region 2 ( - 1 < < < 1) 

(6.9) 
where R, = U'h2/vm. 

the interface between regions 1 and 2 gives 
Now we need suitable boundary conditions. The continuity of pressure across 

which is quite different from the condition obtained by RVc for the case of 
a perfectly conducting fluid. The continuity of vertical velocity yields 

Bl =d2 a t  < =  I. (6.11) 

The boundary conditions (6.3) and (6.4) take the form 

A a 1  
W ( C , 7 )  = --- on <=-1 ,  

(27r)i iaoy 
(6.12) 

& - t o  as <+m. (6.13) 

The pole y = 0 in the above equation is a consequence of the specific time 
dependence assumed a t  the lower boundary. If the forcing a t  z = 0 is removed 
after a finite time T~ then 

which has no singularity in the complex-y plane. 
The remaining boundary conditions will depend on the perturbed magnetic 

field. The continuity of vertical magnetic field h, across the interface between 
regions 1 and 2 gives 

QIcc = 82cc a t  5 = 1. (6.14) 



Internal AlfuLn-gravity waves in a conducting shear Jlow 721 

Further, since h,, h, and hence dhz/dz are continuous, we have 

81{55 - a2551; - 4% +PE - J / (  1 - Y l2 - iP: X2R?nIa( 1 - Y )> ( 8 1 5  - &2{) 

+ { 2 J / ( 1 - y ) 3 + i ~ ~ X 2 R m / a ( l - y ) 2 } 8  = 0 a t  5 =  1.  (6.15) 

From the magnetic induction equation, using the continuity of dzhz/dz2, we get; 

- {S2P~Rm(1 - y ) - i 3 a 0 J } &  = 0. (6.16) 
"o( l -Y)4  

In  region 1, the solution of (6.8) consistent with the upper boundary condition is 

(6.17) 8 = Alexp[im1(5- 1)]+B1exp[im,(5- l)], 

i[at( 1 - y)2- X2 Pol 
ad1 -Y) 

with mli > 0 and mZi > 0 when yi > 0. This branch is forced by the vanishing 
of 8 for large 5 under the condition for which the Laplace transform (6.7) is 
convergent, i.e. yi > 0. 

I n  region 2, we note that 5 = y is the regular singular point of (6.9). Hence the 
solution of (6.9) near 5 = y can be obtained using the Frobenius method and is 

a = A&- y)"fi'oI1(& y )  + B 2 ( [ -  y ) f - W 2 ( ~ - y )  

t -Qz(5-  YI3I33(5- Y) +D&- 4 ( 5 -  y) ,  (6.18) 

where the functions Ii (i = 1,2,3,4)  are given by 

where aZ1, a,,, . . . , b,,, b,,, . . . , and so on are all known constants. The constants 
A,, B,, A,, B,, C, and D, can be determined using the above boundary conditions 
and they are not presented here since the expressions are very lengthy. 

The complete formal solution to the problem is then given by the inverse 
Laplace transform 

W ( t , V , 5 , 7 )  = R e ( ~ f e ~ l ) i i ( a 0 5 + P o V ) l ~  1 B(y,S)exp(-iaoY7)dY), (6.19) 
r 

where the contour of integration r lies along the real-y axis from -00 to 00, 
except where there is a singularity in the integrsnd, in which case it lies above 
(i.e. yi > 0). 

46 F L M  62 
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// 
FIGURE 2. The deformed contour of integration. 

7. Wave propagation after a long time 
As in the case of a perfectly conducting fluid discussed by RVc, the integral 

(6.19) is in general mathematically complicated, but if T is large methods of 
asymptotic analysis akin to that of steepest descent (Jeffreys & Jeffreys 1946, 
fj 17.04) may be applied to give great simplifications. The dominant contributions 
to the integral come from neighbourhoods in the complex-y plane of points 
where either the integral is singular or the derivative with respect to y of the 
coefficient of 7 in the exponent in (6.19) vanishes (saddle point). If < is kept 
finite as T +- co there are no saddle points and the largest contribution comes from 
the pole a t  y = 0. This situation is the same as the one discussed by Booker & 
Bretherton (1967) in the case of hydrodynamic flow a.nd the one discussed by RV c 
in the case of perfectly conducting flow in the presence of an aligned magnetic 
field. I n  this section, we try to show that, except in a neighbourliood of the 
critical level at < = y (i.e. 5 = 0 )  which shrinks with time, the motion everywhere 
becomes that of a standing wave pattern, there being several small decaying 
wave motions superposed on this steady wave motion. I f  the Richardson number 
JfI 2 1, the waves above the layer are very much reduced in magnitude. We n0t.e 
that one of the decaying oscillations is the remnant of transient waves induced 
by the impulsive start to the motions, which are absorbed in the shear layer, each 
a t  the critical level appropriate to their frequency. 

= y which decreases in 
thickness as time goes on in which the motion is not yet steady, even to a first 
approximation. We shall call this region the critical layer. Above and below it 
the motion is damped because of magnetic viscosity and hence a steady state is 
achieved quite quickly. Although the flux of total momentum is not conserved 
because of magnetic viscosity, the total momentum incident on the critical layer 
associated with the upward-travelling wave is nearly all transferred into the 
mean flow and the wave is effectively absorbed. This is contrary to the perfectly 
conducting case (RVc), where the waves are not absorbed in the critical layer 
5 = y. We can also see that in the critical layer the maximum magnitude of the 
horizontal velocities increases with time, this increase in velocity being small 
compared with the hydrodynamic velocity, but after any finite interval the 
velocities and their spatial derivatives are everywhere finite and well behaved. 
Further, if <IT is kept constant as T+CQ, the largest contribution comes from 

There is a region above and below the critical level 
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a saddle point. This corresponds to an upward-travelling dispersive group of 
waves whose dominant frequency a t  any point is exactly such that the corre- 
sponding vertical component of group velocity is 511.. Above this group the dis- 
turbance has not yet penetrated and below it the steady-state solution is 
achieved. It describes the influence of the impulsive start to the solution, but 
ultimately passes by any given point. 

The above results can be proved by considering the singularities of the inte- 
grand in (6.19). These are: 

( a )  y = 0, 
( b )  y = - 1, 
( c )  y = + 1, 
(d )  y = 5, 

a pole, arising from the applied boundary condition (6.3); 
a branch point; 
a branch point plus an essential singularity, I,, Z,+CO; 
a branch point. 

In  addition there are possibly poles when I,, 1, = 0. Assuming that singularity 
( d )  does not coincide with any of the others, we deform the contour of integra- 
tion l? according to figure 2 so that all the singularities lie in the region yd < 0. 
As r --f co the inbegrand is exponentially small except in those regions which are 
near the real axis yi = 0. 

For fixed 5, the largest contribution to the integral in (6.19) comes from the 
pole a t  y = 0. Thus as 7 3 ~ 0 ,  equation (6.19) takes the following forms. 

I n  region 1 we obtain 

w N Re((277)*i[A;(0)exp(imlo(5- 1))  

+ K ( O )  exp (+20K- 1))lexp [i(.,6+Por,Il, (7.1) 

where m,, and m20 are obtained from (6.17) by setting y = 0. This represents two 
stationary waves above the critical level. I n  region 2 

w N Re((277)ti[Ai(O)53fZl"oI1(5) +Bi(O) <&-iflo 

3- C20) C313(5 )  + W O )  5214(5)1 exp M ~ o ~ + P o r ) l 1 ,  (7.2) 

where AL(0) = lim (?A,(?)). The first and the second terms represent standing 

waves above and below the critical level respectively and the amplitude of these 
waves is reduced by a factor exp ( -,.uo7r) in passing through the critical level. 
The other two terms tend to zero near the critical level y = y (i.e. y = 0). 

The contributions to the integral in (6.19) associated with the remaining 
singularities all tend to zero as r + co for fixed 5. Following the analysis of RVc, 
however, we can obtain the contribution from the singularity ( d )  (i.e. y = y),  
which is given by 

Y+O 

This describes a locally plane sinusoidal wave with phase aog+p0r -aocr. The 
lines of constant phase are advected with the basic flow velocity and tilted to  
a nearly horizontal orientation as r .+ CO. The horizontal wavenumbers remain 

46-2 
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constant, but the vertical wavenumber becomes large and the vertical velocity 
decays with time. Similarly, we can show that the contributions from the 
remaining singularities all tend to zero as r -+ co. 

The above analysis is confined to the case where the singularities are distinct. 
Even when the singularities coincide with one another (6.1 9) can be integrated 
(see RVc) and the corresponding wave decays to  zero as r-+co. 

8. Transient disturbances in a conducting shear flow 
Although an analysis similar to that of $ 3  6 and 7 may be used to describe the 

disturbance due to a transient stimulus in a conducting shear layer, the resulting 
integral, which is the formal solution, is mathematically complicated and cannot 
be evaluated in terms of elementary functions. Unfortunately, the addition of 
a finite electrical conductivity makes the problem even more hopelessly intract- 
able. However, it is possible to make, as in the case of a perfectly conducting 
fluid (RV c ) ,  some general statements about the velocity distribution. 

The asymptotic solution for the velocity distribution discussed in $5 6 and 7 
has a pole a t  y = 0 because of the lower boundary condition w = a cos kx. How- 
ever, in the case of transient disturbances this pole disappears, so that the 
velocities everywhere decay with time and the dominant contributions come 
from the singularities of the type ( b )  and (c), which decay with time. Even these 
singularities will not be present in an unbounded uniform shear flow, where they 
are associated with decaying oscillations which are coherent over the whole fluid. 

I n  the present case the vertical velocity associated with the singularity ( d )  can 
be shown to be of the form 

Each term in (8.1) describes locally plane waves of very small vertical wave- 
length ( =  - 1/27rkt&) which decay to zero as t-tco. This decay of the vertical 
velocity field is due to the manifestation of critical-layer absorption for a con- 
tinuous spectrum of frequencies. Each frequency is associated with a critical 
level z,, and a t  each height z there is a corresponding frequency w for which it is 
critical. 

9. Conclusions 
It has been shown that the governing wave equation is one of order four and 

is singular only at Qd = 0 but not a t  8, = _+ QA ; whereas in the case of perfectly 
conducting fluid discussed in RVc the wave equation is of order two and is 
singular a t  Qd = 0, _+ QA.  From this, we conclude that the effect of magnetic 
viscosity on the flow is to remove only the magnetic singularities Qd = -I QA and 
not the hydrodynamic singularity Qd = 0. We find that the behaviour of waves 
near the hydrodynamic critical level 8, = 0 is the same as in the case of hydro- 
dynamic inviscid shear flow discussed by Booker & Bretherton (1967); whereas 
the behaviour of waves away from the critical levels R, = 0, f QA is similar to 
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the perfectly conducting fluid case discussed in RVc. From this we conclude that 
the effect of electrical conductivity on waves is negligible near the critical level 
i& = 0 and away from = 0,  L- QA.  Although the wave equation is not singular 
a t  Qd = ? QA,  we find that these points are still significant in connexion with the 
asymptotic solutions of the wave equation, because they are the magnetic 
Stokes points for such solutions. The limiting form of the wave equation near the 
Stokes points and an exact solution of this equation has been derived and will be 
presented in the subsequent paper (Rudraiah & Venkatachalappa 1974). 

The mechanism of wave absorption near the critical level has been studied 
through the group-velocity approach. We have found that the vertical wnve- 
number becomes infinite as the wave approaches the critical level i& = 0 and 
the group velocity becomes zero a t  that point, so that the waves are completely 
absorbed there; whereas the waves are transmitted across the magnetic Stokes 
points !& = & CIA. This is contrary to the perfectly conducting fluid case (RVc), 
where the waves are completely absorbed a t  = 5 .RA and there exists a forbid- 
den zone, namely lQ,l < QA, for the propagation of waves. 

The energy flux % becomes infinite a t  Q, = 0, which is analogous to the 
situation discussed by Miles (1961). This may be due to the neglect of viscosity 
and heat conduction and the energy flux may become finite in the presence 
of these two diffusive effects. I n  particular we note that the discussion of momen- 
tum transport to the basic flow becomes very difficult since the expression for 
the vertical momentum flux is mathematically complicated. Therefore, to study 
the momentum transport analytically we have used the approximation 

where F, is the perturbation magnetic field. Within this approximation we have 
found that the vertical momentum flux is not conserved and this may be due 
to the dissipative effect of magnetic diffusivity. Even in this approximation the 
group-velocity approach shows that the waves are absorbed a t  the critical level 

In  $3 6 and 7 we have considered an initial-value problem and found that near 
= 0. 

the critical level (5 = y the motion becomes that of a standing wave pattern. 
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